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A methodology for assessing the quality and analysing the sound field of a numerical

solution for an aeroacoustic problem is presented using an in-duct propagation problem

as example. Namely an analysis of the acoustic energy conservation provides insight

about the solution quality; sources of numerical error as well as physical source of

sound are located by an analysis of the acoustic intensity; a mode analysis provides

information about the sound field in the duct and a visualisation of the average pathway

of sound by the acoustic intensity helps the interpretation of the modal amplitude data.

The problem chosen for the presentation deals with the propagation of a single acoustic

mode upstream through the tapering inlet duct of a centrifugal compressor. The

propagation of tone noise is a typical problem for computational aeroacoustics.

The numerical approach employs high-order finite-difference discretisation schemes

with structured body-fitted meshes. An overset grid approach allows to overcome the

geometrical complexity of the problem. The conservation of the acoustic energy is found

to be violated by less than 3% in case of a potential base flow. In this case major sources

of error are found in the interpolation between overset and background mesh. In case of

a non-potential flow with boundary layers at the wall, the conservation of acoustic

energy cannot be claimed. Consequently, it shows an increase of the acoustic energy, for

which the accelerated flow in the nozzle is identified as source. It is shown that the

filtering scheme affect the solution more than the spatial discretisation, if the grid

resolution is relatively high. A strong scattering of energy into higher radial modes is

detected. The fifth and sixth radial mode are found to be preferred in the current

example. They are excited in the nozzle with a similar level. For these high radial modes,

the transport of acoustic energy takes place further away from the duct wall. This

explains the relatively large drop of about 20 dB for the average sound pressure level at

the wall over the inlet nozzle.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The prediction and understanding of the in-duct propagation of turbo-machinery noise is one of the major objectives for
the development of numerical methods in computational aeroacoustics (CAA). Different from the low-order methods,
which are classically used in computational fluid dynamics (CFD) to obtain the steady flow physics, CAA methods are using
high-order approximations. Therefore, they have the potential to describe acoustic propagation and help in developing
quiet turbo-machinery from the drawing board. Especially for tonal noise and modal propagation, which play a major role
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Nomenclature

c speed of sound
Cij interpolation coefficient
e Cartesian unit vector
ea acoustic energy per unit volume
i index of spatial discretisation and imaginary

unit
I acoustic intensity
j index of spatial discretisation
L Lagrange polynomial
m azimuthal mode number
n surface normal
n radial mode number
p pressure
P acoustic power
QPL source power level
q acoustic source
S surface
u velocity vector
u axial velocity component
v radial velocity component
w azimuthal velocity component

x position vector in physical domain
x coordinates in physical domain

/ state of the fluid
R density
s directional damping coefficient
x coordinate in computational domain
Z coordinate in computational domain

0 small perturbation
� interpolated

0 mean flow state

j azimuthal component

r radial component

x axial component
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in the inlet section of turbines and compressors, many successful applications are reported. In this context CAA is able to
predict mode scattering and mean flow effects as well as the influence of complex geometries on the sound propagation.
Current CAA methods use optimised high-order discretisation schemes together with perturbation approaches, which
theoretically allow an exploration of the sound field down to the threshold of audibility with a minimal number of grid points.

However, such applications require a reliable stability and provable accuracy of the computational method. These
requirements are often conflicting goals for CAA methods, which use artificial dissipation and dissipative filtering to obtain
stable solutions for a non-dissipative physical problem. Even though this is not necessary, CAA methods are usually applied
with a non-conservative mathematical model solving a perturbation equation about an arbitrary base flow. No
conservation laws apply in general for the acoustic perturbation [1]. Thus, the application of non-conservative finite-
difference schemes as the Dispersion-Relation-Preserving scheme of Tam DRP [7] for CAA method seems legitimate.
However, it opens the door for speculations about the accuracy of the numerical result. Therefore, a general method to
prove the accuracy of such solutions seems a necessary condition for the acceptance of CAA methods.

The problem cannot simply be overcome by going back to the classical CFD methods. Even though, these methods
are conservative, their properties with respect to the propagation of acoustic waves are far from the desired accuracy
and resolution limits. Furthermore, the major advantages of the CAA methods as integral part of a physical domain
decomposition are based on the specific mathematical perturbation approach about an average flow field and the
numerical high-order modelling. In addition, for an efficient application of CAA, the modelled problem has to clip the
reality, which introduces modelling errors at the same time. Such errors can result from the application of a simplified
model equation and the reduction of the model dimensions. In addition, a discrete sampling of space and time functions is
performed, which produces cut-off errors. Moreover, commonly used techniques as selective damping or digital filtering of
the solution add dissipation to the result, which should not affect the resolved range of wavenumbers. For many of the
high-order CAA methods, these techniques are required to ensure the stability of the method. As will be shown, it is easy to
get 20 dB off the exact solution by applying a slightly more dissipative filter. Therefore, a proof of the numerical solution for
artificial dissipation seems highly recommended. Another important error source is the structured meshing of complex
geometries, which often leads to stretched and skewed grids in the physical domain. These are then mapped to an
orthogonal mesh in the computational domain and the mapping spreads the wavenumber spectrum. In consequence parts
of the solution are mapped into the unresolved range of wavenumbers. Thus, such meshes for complex geometries are
known to increase numerical errors, as grid oscillations and dissipation. A possible way to overcome the problem is the
application of an overset grid technique, with a high-order interpolation between body-fitted and background mesh.
However, numerical dissipation due to the interpolation error is unavoidable for this solution and should be quantified.
Finally, the introduction of artificial non-reflective boundary conditions can lead to errors.

The analysis of the acoustic intensity, as it is proposed in the current paper, could remove the uncertainty. Even though
there is no way to find a general conservation law for the acoustic energy, the analysis would allow to assess the quality of
the solution and locate physical sound sources together with non-physical error sources in a numerical solution. The
current paper uses the acoustic energy and intensity defined by Morfey [1] for this purpose.
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Fig. 1. Sketch of the inlet duct considered as test case.
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The centrifugal compressor inlet duct shown in Fig. 1, which is experimentally investigated by the German Aerospace
Center (DLR) [3] is chosen as an example problem. Different from the usual convention, the flow direction is from the right
to the left in all figures throughout the paper, whereas the acoustic waves propagate conventionally from the left to the
right. The compressor radiates harmonics of the blade passing frequency as tones in high azimuthal modes into the narrow
immediate inlet channel (IIC, see Fig. 1). These modes then propagate upstream against the flow at Ma ¼ 0:3 through the
inlet nozzle with decreasing flow velocity. Finally, they travel upstream the wider inlet channel (IC in Fig. 1) into an
anechoic termination. The inlet nozzle couples the narrow IIC to a wider inlet channel (IC) upstream. Due to the different
diameter and almost independent of the azimuthal mode number, 10 radial modes are cut-on in the IC when only one
radial mode of the same azimuthal mode can propagate in the IIC. Measurements for the problem have been carried out by
Raitor et al. with a rotating microphone array [3].

The current numerical investigation was motivated by the observation of a large decrease of the sound pressure level of
nearly all higher azimuthal modes at various frequencies, when considering measurement positions in the narrow (IIC) and
in the wide inlet duct (IC) of the centrifugal compressor sketched in Fig. 1. This observation cannot be explained by simple
models like an equal distribution of power over the duct area or the assumption of the acoustic energy remaining in the
same mode. Both assumptions would explain only about 10 dB decrease of the sound pressure level at the wall for the
about 10 times larger area of the IC with respect to the IIC. The observed average decrease is typically in the range of 20 dB
for all modes and tones, when considering a spatial average of the sound pressure level along the wall. However, due to the
tapering inlet nozzle mode scattering occurs and the acoustic field becomes relatively complex. Thus, an assessment of the
numerical solution by considering the pressure amplitude or sound pressure level becomes impossible and an analysis of
the acoustic intensity is an useful approach to verify the solution.

The centrifugal compressor inlet duct problem features all typical properties for in-duct CAA applications as there are
the presence of higher azimuthal modes at high frequencies in a varying mean flow and a varying duct area. Moreover, the
open area of the inlet duct changes by the factor of 10, which makes the geometry complex in the sense of a CAA method
designed for structured Cartesian meshes. This problem is overcome by an overset grid approach here. Furthermore, the
whole problem is axisymmetric, thus a modal axisymmetric mathematical model is used and the computation is carried
out in two dimensions.

The paper is organised as follows: In Section 2 mathematical models and numerical methods are briefly presented. The
intensity definition used throughout the paper to access the solution is given in Section 3. The test case, mean flow and grid
details are presented in Section 4. A detailed analysis of intensity and modal content is given together with the results in
Section 5. Different model equations and mean flow assumptions are compared and analysed. Finally, conclusions are
drawn in Section 6.
2. Mathematical model and numerical method

2.1. Mathematical models

The governing equations describing the propagation of all linear perturbations in an arbitrary moving fluid are the
linearised Euler equations (LEE):

DR0

Dt
þ u0 �=R0 þ R0= � u0 þ R0= � u0 ¼ 0, (1a)
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Du0

Dt
þ
R0

R0
u0 �=u0 þ u0 �=u0 þ

1

R0
=p0 ¼ 0, (1b)

Dp0

Dt
þ gp0= � u0 þ u0 �=p0 þ gp0= � u0 ¼ 0. (1c)

The material derivative D � =Dt is given by

D�

Dt
¼

q�
qt
þ u0 �=ð�Þ,

where the transport velocity is given by the average flow speed u0.
For isentropic mean flow conditions and perturbation, the energy equation for the pressure (Eq. (1c)) can be replaced by

the algebraic relation:

p0 ¼ c2R0, (1d)

with the square of the speed of sound defined as follows:

c2 ¼ g p0

R0
.

The duct geometry and mean flow conditions are considered axisymmetric. A harmonic approach is introduced for the
azimuthal variation of the perturbations assuming an axisymmetric base flow field as given by Li et al. [4]. Then, the
gradient is defined as follows for the mth azimuthal Fourier component:

=Axi ¼
q
qx

ex þ
q
qr

er þ
im

r
ej.

For the cylindrical coordinate system, the derivatives of the basis vectors er and ej have to be considered in addition.
The three-dimensional solution is obtained as the superposition of an infinite number of azimuthal Fourier components in
general. However, in many cases the number of azimuthal modes m is limited due to the specific sound source or geometry
considered, which leads to an advantage of the current modal axisymmetric approach over the full three-dimensional
computation. The system is written in matrix–vector-form as

q/0

qt
¼ �A �

q/0

qx
� B �

q/0

qr
�

1

r
C �/0 � D �/0, (2)

with /0 as the vector of perturbation quantities. The matrices A, B, C and D contain the coefficients obtained from Eq. (1) for
the LEE. In addition to these linear modal axisymmetric models, a system of perturbed nonlinear non-conservative Euler
equations (PENNE [5]) is available for fully axisymmetric problems [6], which is employed here to calculate the average
mean flow field for the perturbation approach.

2.2. Discretisation schemes

The numerical method is based on the fourth-order Dispersion-Relation-Preserving (DRP) scheme [7] for the spatial
discretisation. At the boundaries such as the walls and the open ends of a duct, optimised backward stencils of fourth-order
are used. The time integration is performed by the alternating five/six stage Low-Dissipation–low-dispersion-Runge–Kutta
(LDDRK) method [8] implemented in 2N storage form [9].

2.2.1. Filtering of the solution

According to Tam et al. [10] all high-order finite-differencing schemes are affected by spurious grid oscillations, which
are related to not fully resolved short-wave components in the solution. A central, seven-point-stencil, standard filter (FIR)
of sixth order is applied at every 10th full Runge–Kutta step in order to eliminate parasite waves [6]. The filter is defined as
the approximation /� of a field variable / at the point l which is based on the neighbouring points l� N to lþ N as

/�l ¼ /l � sfilter

XN
j¼�N

wjflþj, (3)

where the filter coefficient sfilter, 0osfiltero1, controls the effect of the filter. A full filtering is achieved by sfilter ¼ 1,
whereas the attenuation of waves in the transition zone of the seven-point-stencil filter is reduced by specifying
sfilter ¼ 0:2. The filter coefficients for the low-pass filter are obtained from a Taylor series expansion equation (3) setting
sfilter ¼ 1. For sfilter ¼ 1, the transfer function of the filter in the wavenumber space is given by the response to a spatially
harmonic excitation with the relative wavenumber kDx as

C ¼ 1�
XN

j¼�N

wje
ijkDx. (4)
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At domain boundaries, the seven-point-stencil central filter cannot be applied. It is found that a filtering with shorter filter
stencils has a favourable effect on the stability, when applied towards the wall ðN ¼ 3 . . .0Þ. However, to avoid too high
dissipation due to these short filters, the filter coefficient sfilter is reduced with decreasing filter order according to the
empirical law

sðNÞ
filter
¼

2N þ 1

11

� �2

sN¼5
filter. (5)

2.3. Meshing variations of the geometry by overset grids

The application of a finite-difference CAA method that employs high-order discretisation schemes necessitates a
structured mesh. For a complex geometry, block-structured, curvilinear, body-fitted grids have to be used, which causes
two major difficulties. On the one hand it is tedious and challenging to generate a good quality mesh with less distorted
cells to avoid numerical errors. On the other hand large overlapping areas at the block boundaries cause grid singularities
on intersections of odd number of block joints. To avoid these two problems, speed up the grid generation process and
increase the overall grid quality, the presented CAA solver uses an overset grid approach [11].

An orthogonal and equidistant host grid spans the whole computational domain. The solids in the domain are separately
meshed with high quality body-fitted grids. These grids are set over the host grid. The data transfer between the individual
overset grids and the host grid is accomplished by a high-order interpolation method, using a Lagrange polynomial
approach.

Applying a 4� 4-point stencil (see Fig. 2), the node coordinates in the destination grid x� can be written in terms of the
node coordinates in the source grid x by

x� ¼ xðx;ZÞ ¼
X3

i¼0

X3

j¼0

xi0þi;j0þjCijðx;ZÞ. (6a)

The interpolation coefficients Cij yield to

Cijðx;ZÞ ¼ LiðxÞLjðZÞ, (6b)

by using of Lagrange polynomials

LiðxÞ ¼
Y3

n¼0;nai

x� n

i� n
(6c)

and can be calculated by solving the nonlinear equation (6a).
A tool used for searching the origins xi0;j0

of the interpolation stencils and for the identification of areas excluded from
solving in the host grid was developed and is used in the preprocessing [11]. Therefore, the overhead in each time step due
to the overset grid technique is minimised. During the simulation, only the perturbation quantities /0 ¼ ðR0;u0;v0;w0; p0ÞT
have to be interpolated by Eq. (7), using the predefined coefficients Cij:

/0
�
¼ /0ðx;ZÞ ¼

X3

i¼0

X3

j¼0

/0i0þi;j0þjCijðx;ZÞ. (7)
x*

xi0,j0,k0

Fig. 2. Stencil used for interpolation from the source grid (straight) to the overset grid (curved).
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As a consequence, the CAA solver retains efficiency, whereas the grid generation is eased dramatically. The overset grid
approach increases the grid quality and accuracy of the result significantly.

2.4. Boundary conditions

2.4.1. Non-reflective boundary condition

The non-reflective boundary condition for open duct ends is based on the perfectly matched layer (PML) of Hu [12]. The
vector component of the damping sx is increased towards the outer boundary at an open end. In addition, the outermost
grid line is set zero for all perturbation components. A simple sponge layer that adds damping is used at the boundary with
an incoming sound source:

q/0

qt
¼ Fð/0Þ � sxð/

0
� /0sourceÞ. (8)

The sound source is defined by /0source, which could be an arbitrary time dependent perturbation in general. Spatially,
a single Fourier component is considered in azimuthal direction, while the axial and radial directions are free. At the
outermost three grid lines the source is given as a Dirichlet boundary condition.

2.4.2. Modal symmetry condition

A modal symmetry boundary condition with a singularity treatment is used at the axis. It is based on the assumption that the
solution for the mode m is a superposition of various radial modes of this azimuthal mode for each frequency. When considering
the analytical solution in a straight cylindrical duct without centre body and with plug flow according to [4] these modes are
described as Bessel functions of the order m. With r approaching to zero these modes behave as a Bessel function of the first kind
of the order m for p0;R0 and u0. The mth-order Bessel function of the first kind tends to the limit of p0R0 and u0�rm with r

approaching to zero. The radial and azimuthal velocity components of such modes behaves as the derivative of the mth-order
Bessel function, then. This leads to the limit v0;w0�rm�1 for the radius approaching zero. This limit for modes in a straight duct is
used as an approximation of the solution close to the axis where the amplitude of the high azimuthal modes is very low.

Assuming j to be the coordinate direction normal to the axis, the pressure at a point with index j close to the axis can be
calculated from the pressure perturbation p0jþ1 further away from the axis as follows:

p0j ¼
rj

rjþ1

 !m

p0jþ1. (9)

The density and axial velocity follow the same law, but due to the radial derivative for the radial acoustic velocity component
and the additional division by r for the azimuthal component, the following interpolation law is applied at the axis:

v0j ¼
rj

rjþ1

 !m�1

v0jþ1. (10)

The above approximation is used in an environment around the axis to avoid a small time step size due to the stiff character
of the mathematical model for small r. In the current example the interpolated region covers up to three grid spacings from
r ¼ 0. In addition, three points below the axis are defined, to keep with the central differencing scheme at the axis. These
points are obtained by mirroring the perturbation field from the three points above the axis.

2.4.3. Wall boundary condition

The boundary condition for hard walls is based on the idea of Tam and Dong [13] to introduce a ghost point pressure.
However, the ghost point is neither stored nor part of the mesh. The implementation is described in detail by Richter et al. [14].

3. Acoustic intensity analysis

In the present paper the acoustic intensity in the definition of Morfey [1] is used to access the quality of the acoustic
solution and compare the different modelling assumptions. Using the acoustic intensity to assess the quality of a numerical
solution is not a completely new idea. It has been proposed for instance by Eversman before [15]. However, within a large
number of publications considering CAA methods there are only few authors who provide an analysis of the acoustic
intensity with their solutions.

3.1. Definition and conservation of the acoustic energy

The usefulness of the concept of acoustic power depends on the validity of a continuity principle for the fluctuation
energy. In general the conservation of acoustic energy can be expressed in the form

@ea

@t
þ= � I ¼ q, (11a)
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where ea denotes the acoustic energy per unit volume, I is the acoustic intensity, and q is the production rate of acoustic
energy per unit volume. Following Morfey [1], the definitions

ea ¼
p02

2r0c2
0

þ
r0

2
v0a � v

0
a þ r

0u0 � v
0
a (11b)

and

I ¼ ðp0 þ r0u0 � v
0
aÞ v0a þ

p0

r0
u0

� �
(11c)

are used here. These definitions can be regarded as a generalisation of the classical expressions for acoustic energy and
intensity to non-uniform flow fields. In contrast to the classical situation of a medium at rest or a homogeneous flow, it is
not possible to find useful definitions of acoustic energy and intensity for arbitrary inhomogeneous flow fields. In this case,
the production rate q on the right-hand side of (11a) is not everywhere found to be zero or at least of third order in
fluctuation quantities. However, the definitions (11b) and (11c) have the advantage that q at least vanishes (to second order
in fluctuating quantities) in all regions with irrotational flow and uniform specific entropy. Thus, the production of
fluctuation energy is limited to regions with non-zero vorticity or entropy variations. There, the quantity q represents the
production rate at which acoustic energy is generated in the flow.

3.2. Identification of acoustic sources

Note that q may also be negative, which means that fluctuation energy is annihilated. To obtain the effective production
of fluctuation energy one has to consider the temporal average of q. In case of a statistically stationary flow the temporal
average of Eq. (11a) yields

= � hIit ¼ hqit , (12)

because the mean value of qea=qt vanishes. Hence, the effective production of fluctuation energy can be calculated taking
the divergence of the mean acoustic intensity hIit. This value can be easily calculated from numerical solutions. So Eq. (12)
can also be used to assess the quality of computational methods for inhomogeneous flows, where no analytical solution
is available for comparison. If the mean flow is a potential flow field, then the production rate of acoustic energy should
be negligible. Higher magnitudes of hqit indicate regions where numerical errors or physical sources lead to generation or
annihilation of acoustic energy. Annihilation of acoustic energy occurs, for example when artificial damping of acoustic
waves is present due to numerical viscosity or filtering, and an artificial production of fluctuation energy can be caused by
numerical instabilities.

3.3. A logarithmic source power level scale for the source strength

The source strength hqit has an unit of W m�3, denoting a specific acoustic power which is input in average from a
source with equally distributed additive superposing source strength in a volume of 1 m3. It shows a large dynamic range.
For a better visualisation, a logarithmic scale is chosen which is based on the power spectral density (PSD). The average
source strength can be negative, which means an annihilation of acoustic energy. Therefore, the absolute value of the
source power is considered to obtain another logarithmic scale for the annihilation of acoustic energy. The resulting two
logarithmic scales are put together adding the original sign of hqit to obtain negative values for sinks and positive ones for
sources of acoustic energy. To obtain distinct scales with this properties, sources with an QPL below 0 dB are cut-off by a
max operation in the logarithm. Accordingly, the acoustic source power level QPL, which gives the average acoustic power
input on a PSD like scale can be defined as

QPL ¼ sgnðhqitÞ10 log10 max
jhqitj

10�12 W m�3
;1

� �� �
. (13)

The QPL becomes zero, if the absolute value of the input source power is below the threshold of 10�12 W m�3. The QPL
scale is used in the following to visualise the source distribution. The scale is adjusted in order to separate the dominant
sources from the background noise.

3.4. Validation of numerical solutions by the conservation of acoustic energy

Beside the analysis, which uses local values of hqit to asses the quality of a numerical solution, also an integral approach
is obvious, where the energy balance over a control volume is considered. The global conservation law is obtained
integrating Eq. (12) over a volume V with closed surface S, which leads toZ

S
n � hIit dS ¼

Z
V
hqit dV , (14a)
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where n is the surface normal, and n � hIit is the (temporal mean) flux density of acoustic energy across the surface S

(compare [15]). Relation (14a) is used in the present paper to investigate the conservation of energy in a duct with
impermeable side walls. Therefore the mean flux hPit through a cross section of the duct is considered. This flux can be
calculated by

hPðxÞit ¼

Z
Sx

n � hIit dSx, (14b)

where Sx is the area of the respective lateral cut through the duct and n points in axial direction. The variation of hPit with
axial position x gives an overview about the energy conservation in the duct. Theoretically the flux of acoustic energy
through the impermeable side wall is zero. If the duct flow is irrotational and isentropic, then no acoustic energy should be
generated or annihilated in the duct, and consequently, because of (14a), the flux hPit should be identical for all axial
positions x. In this case the variation of the average hPit along x indicates the level at which the global conservation of
acoustic energy is violated by a numerical solution.

If the flow is not irrotational or contains entropy variations, which is the realistic scenario for viscous flows, additionally
to the numerical errors a natural production of acoustic energy in the flow is possible. Then the numerical disturbance of
the acoustic energy balance cannot be easily distinguished from the natural effect. However, it can still make sense to apply
the energy analysis in the presence of viscous flows, too. If, for example, changes of numerical parameters have a strong
influence on the distribution of hPit along the duct axis, then there is an indication that the numerical method has problems
to describe the balance of acoustic energy in the duct flow correctly.

It has to be noted that the energy analysis in the above form is valid for any acoustic solution in which the fluctuations
are statistically stationary. But it is also possible to apply the whole analysis to single transient events, where the
fluctuations are zero at the beginning and at the end. In this case the average h�it is meant over the whole event. In contrast,
an application to an initial value problem is not possible, as the change of the acoustic energy in a volume is non-zero in
average due to the unsteady initial distribution of the acoustic energy.

4. Test case

4.1. Experimental configuration

The centrifugal compressor inlet configuration introduced before and sketched in Fig. 1 is considered as a test case. The
base flow conditions are calculated based on one of the experimentally investigated cases [3]. The exact operation
conditions considered here are summarised in Table 1. In the experiment, harmonic tones of the shaft rotation frequency
dominate in the configuration at the given operation conditions with a mass flow rate of 2:531 kg=s in the duct [3]. The
main tone is radiated in a single m ¼ 13; n ¼ 0 mode at the blade passing frequency (BPF, 10 896:4 Hz), which is the 13th
harmonic of the shaft rotation frequency. This single duct mode is excited in the IIC and the propagation is investigated
numerically in order to study the effect of the geometrical boundary conditions and the base flow on the mode scattering in
a typical example. However, the large variation in the open area of the duct produces similar conditions for all azimuthal
modes cut-on in the IIC and the results may qualitatively apply for other modes at other frequencies too.

4.2. Numerical model

Only the axisymmetric inlet duct with inlet nozzle and immediate inlet duct shown in Fig. 1 are considered in the
simulation. The simulation is carried out in the x; r-plane of a cylindrical coordinate system. The azimuthal direction is
modelled by the model axisymmetric approach of Eq. (2). The inflow and outflow ends are considered anechoic by the PML
[16] and source (Eq. (8)) boundary conditions respectively. The block structured mesh sketched in Fig. 3 consists of nine
blocks with a total of 786 736 grid points. Four thousand points (0:5%) of host and overset grid are interpolated by Eq. (7) in
total. The implementation of the PML and sponge layer boundary conditions produces an overhead of 12 690 points (1:6%)
which is included in the total grid number. The typical spacing of 8� 10�4 m for axial and radial direction is kept
throughout the whole background mesh and theoretically allows to resolve frequencies up to 60 kHz. The fine resolution is
mainly necessary to resolve the thin shear layers of the mean flow. There are only small variations from this mesh spacing
in the overset grid. The resulting time step size is 5� 10�7 s. Overall, 0:021 s of real time are calculated on a dual core
Table 1
Summary of the experimental set up.

Narrow inlet duct (IIC) Wide inlet duct (IC)

Diameter [m] 0.157 0.494

Flow velocity [m/s] 104.582 11.064

Temperature [C] 12.427 17.639

Pressure [kPa] 93.443 99.527
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Opteron machine with 2:2 GHz and four GB of main memory within 37 h for the isentropic model using MPI. The non-
isentropic model requires the solution of an additional equation and therefore takes 39 h on the same system. The last 10
full periods (9:2� 10�4 s) of the considered tone are included into the time average of the acoustic intensity.

To access the influence of two different mean flow assumptions, a slip wall condition is compared to a resolved shear
layer defined by a Stokes boundary condition. The mean flow with wall bound shear layer was calculated using TRACE, a
Navier–Stokes-solver for turbo-machinery applications developed by the German Aerospace Center [17]. For comparison, a
mean flow based on a nonlinear Euler equation with a slip wall assumption is used. This mean flow is calculated on the
structured mesh shown in Fig. 3 using the numerical method described in Section 2.2. However, a steady flow source is
described at in and outflow and the model equations are replaced by an axisymmetric so-called PENNE approach [5], which
has been implemented into the method for the simulation of nonlinear noise propagation [6]. The mean flow Mach number
is shown in Fig. 4 for both, the slip wall and the shear layer at the wall. The major difference of the two base flow models is
found in the solution in the region of the contraction (compare Fig. 4).

Two different mathematical model assumptions for the propagation of the acoustic perturbation following from Eq. (1c)
and (1d) are compared using two different base flow conditions. The results for cases denoted by (A)–(D) are summarised
in Table 2. The variety of cases is used to study a possible influence of the modelling on the acoustic solution. All four cases
are presented and analysed in the following sections.

5. Results

The results and discussion are organised as follows. First in Section 5.1 the instantaneous sound field and the resulting
wall sound pressure levels are presented. Then the sound field in the IC undergoes a modal analysis in Section 5.2. The
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Fig. 5. Averaged sound pressure levels at the wall relative to the input level.

Table 2
The four model assumptions considered for comparison.

Notation Mean flow Energy equation

(A) Euler potential flow shown in Fig. 4(a) Full energy equation (1c)

(B) Isentropic relation equation (1d)

(C) Stokes boundary condition with shear layer shown in Fig. 4(b) Full energy equation (1c)

(D) Isentropic relation equation (1d)
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methods developed in Section 3 are employed in Section 5.3 to quantify the numerical error and in Section 5.5 to locate
acoustic sources. Subsequently the grid convergence and the influence of the filter stencil are studied in Section 5.4. Finally,
a model vision for the sound field is developed based on the time averaged acoustic intensity in Section 5.6.
5.1. Sound pressure level at the wall

First the sound pressure level at the wall is analysed. The numerical results are given in Fig. 5 for all four modelling
assumptions presented in Table 2. The sound pressure level is normalised by a reference source level. This reference is
taken from a wall point inside the sound source region in the IIC. The point represents the input of the source and is not
affected by reflections. The duct is a wave guide. A change of the impedance in such wave guide, which is related to the duct
area in the current example, in general produces reflections. Therefore, the inlet nozzle is supposed to be a source of
reflections. However, the small variations of the wall sound pressure level in the IIC, found in Fig. 5, indicate that very small
reflections towards the IC are present for all four cases.

The IC shows larger variations of the wall sound pressure level than the IIC. The average value of the wall sound pressure
level in the IC is plotted as straight line in Fig. 5. The decrease of the sound pressure level between immediate inlet channel
(IIC) and the upstream inlet channel (IC) is about 18 . . .20 dB in average for all four modelling assumptions. Even though no
detailed spatial data were provided, this is in a good qualitative agreement with the observed average wall SPL in the
experiment.

When comparing the four modelling assumptions in Fig. 5, especially the axial location of the peaks and minima is
found to be different, whereas the absolute range of variation and the average value are found to be similar. The variation of
the physical model with the same mean flow produces hardly observable differences, when comparing (A) to (B). Slightly
larger, but still very small variations are found in case of the shear layer boundary condition when comparing (C) to (D).
Due to the different location of the peaks, the different mean flow profiles produce variations of up to 15 dB for local peaks
when comparing (A) to (C) and (B) to (D). Nevertheless, the peak amplitudes are very similar and the average level in the IC
differs by less than 2 dB.
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The RMS value of the wall sound pressure in the IC ranges from 0:01% to 6% of the source value in the IIC for all four
solutions. This corresponds to a relative wall sound pressure level attenuation in the range of �12 to �40 dB from IIC to IC.
Those observations underlined the participation of multiple radial modes at similar levels to the complex sound field of the
inlet channel. Due to the different axial wavenumber of each radial mode of the m ¼ 13 azimuthal mode, the relative phase
of these modes changes with the axial location. In addition, as the origin of the modes is triggered by the inlet geometry
and mean flow, the resulting superposition field at the wall depends only on the axial position. The observed sound
pressure level is independent of the azimuth angle. Therefore, wall mounted microphones report equal sound pressure
levels for all radial modes of the same azimuthal mode, independently of their azimuthal position. The instantaneous
pressure contours for the example of case (C) are presented in Fig. 6 to underline the complex structure of the sound field in
the IC.

A further analysis of the result is required to give details about the modal structure, which is the subject of the next
section. Furthermore, based on Fig. 5 or 6, it is difficult to decide on the quality of the current numerical solution. As
discussed the decreased wall sound pressure level could also be caused by numerical dissipation or interpolation errors due
to the overset grid method. In particular the exact level of the all present numerical errors cannot be directly estimated
with such a complex sound field of the inlet duct. The acoustic intensity is employed for this purpose in Section 5.3.
5.2. Modal analysis of the sound field in the inlet channel (IC)

The radial modes found in the IC are analysed by a modal analysis tool [18], to prove the presence of higher radial modes
in the solution and quantify their contribution to the observed sound field. Fig. 7 shows the results of the radial mode
analysis in the IC. The bars shown in Fig. 7 correspond to the sound pressure level of each single cut-on radial mode and the
first cut-off mode (n ¼ 10) of the m ¼ 13 azimuthal mode relative to the input sound pressure level in the IIC. From Fig. 7 it
can be seen that in general the n ¼ 4 and 5 radial modes contribute at the highest level and all cut-on radial modes are
present at a non-negligible amplitude in the IC.

The modal analysis results for the isentropic and non-isentropic model assumption, comparing the same flow
conditions do not differ at all in case of the slip wall assumption, cases (A) and (B). Most of the radial mode amplitudes
Fig. 6. Instantaneous pressure contours (shear layer).
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differ marginally by up to 1 dB in case of the realistic sheared flow conditions, cases (C) and (D), when varying the
mathematical model. One exception is found for the n ¼ 9 mode with shear layer assumption for the mean flow, which is
found to produce a difference of 14 dB when comparing the two mathematical models (C) and (D). This is interesting on the
background of the fact that the simplified isentropic model equations are not adequately chosen to describe the average
flow field in case (D). The difference occurs only in one radial mode, but it shows that modelling simplifications like the
application of a simplified isentropic pressure density relation may have a strong influence on the solution.

More significant differences of up to 17 dB are observed when comparing the different models for the base flow, the slip
wall cases (A) and (B) to the boundary layer cases (C) and (D). The modal content is changed due to the presence of a shear
layer. While the first three modes show a dynamic range of 9 dB with a clear preference of the n ¼ 0 mode in case of a slip
wall (A, B), the sheared base flow (C, D) balances the levels of these modes. In case of a wall bound base flow and a
consistent non-isentropic modelling of it, the n ¼ 3 mode is found to be increased.

Altogether, the results of the mode analysis reveal the strong scattering of energy into higher radial modes. This mode
scattering in the inlet nozzle is geometry and mean flow induced and it prefers the radial modes around n ¼ 4 and 5 in the
given case. As higher modes carry more energy in the inner duct and less energy at the outer wall, the power level at
the wall (compare Fig. 5) is decreased more than it would be expected due to the changing area. A modal analysis of the
experimental result by Raitor et al. [3] is not available yet, such that a further validation of the current result with the
experiment is not possible.
5.3. Acoustic power along the duct

Now, Eq. (14b) is considered to validate the acoustic solution. The average acoustic power flux hPit is plotted along the
axis of the duct in Fig. 8. The values are normalised by the input power, which is here defined by the power flux in the IIC
directly upstream the sponge layer of the sound source. This is necessary to avoid distortion of the input power by the
artificial dissipation of outgoing waves inside the source layer. In consequence, the normalisation quantity is the resulting
power flux of incoming and reflected waves in the IIC. In a potential mean flow without acoustic sources hPit should be
equal to unity for all axial positions in the duct. The results indicate that this is not the case and acoustic sources, which
include the effect of numerical dissipation and interpolation errors, are present. The acoustic power is approximately
constant in the straight sections of IC and IIC for all four solutions, whereas in the nozzle section deviations up to 20% are
observed. hPit first rapidly increases when entering the nozzle from the IIC. For all expect the shear layer case hPit decreases
in the nozzle. Another jump is found at the end of the nozzle towards the IC, which equalises the level back to the value
found in the whole IC. Strong oscillations are found in the region affected by the overset grid.

When considering the straight IC or the IIC section alone, the acoustic power remains approximately constant for all
four cases. There is a small increase of hPit along the IC for the shear layer with full LEE model. When considering the
conservation of the acoustic energy from IIC to IC, it is found that the overall acoustic power decreases by approximately
2–3% for all mean flow conditions expect for the shear layer with non-isentropic model (C), where the level increases by
15%. In this case the increase is considered to be a natural effect of the shear layer, which adds acoustic energy.
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Fig. 8. Normalised acoustic power level hPai along the duct based on the intensity definition of Morfey [1].
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A fourth-order interpolation is applied in the overset grid region. The numerical scheme is of fourth order as well.
However, it is optimised in order to provide a better approximation of the wavenumber than a sixth-order scheme.
Therefore, the order of accuracy for the overset grid may not be sufficient. The oscillations in the overset grid region point
in the same direction. Resolution differences lead to grid oscillations. In all cases, the overall error from the overset grid
region to the leading order determines the resulting error in the conservation of the acoustic energy. The numerical
interpolation error as well as the physical sources due to the non-potential mean flow are localised in the region of the
overset grid. Therefore, it is difficult to distinguish numerical and physical sources from the above observation. A more
detailed view on the sources will be provided in Section 5.5 by the source power level.

The flow conditions calculated with the slip wall approximately meet the assumption of an irrotational, isentropic
potential flow. As theoretically expected, isentropic and non-isentropic model equations do not show any difference for the
cases (A) and (B). The two cases (C) and (D) with shear layer profile towards the wall are suspected to allow an exchange of
energy between non-isentropic mean flow and acoustic waves. Thus the conservation of the acoustic energy would be
disturbed by natural sources in the flow in cases (C) and (D). However, only in the case (C), where the shear layer is
correctly modelled by a variant of the LEE, which allows non-isentropic mean flow conditions, the acoustic power increases
by 15% (see Fig. 8). In case (D), which uses an isentropic mathematical model for the non-isentropic sheared base flow, the
numerical errors and the physical source strength due to the mean flow seem to cancel. Therefore, the preservation of the
acoustic energy is found to be best met for this case.
5.4. Further numerical experiments for the classification of the current result

The results indicate that the acoustic intensity is not fully conserved in the current example. However, the relative error
is small. To further investigate the error level and assess the result, case (B) is picked.

The current mesh was originally designed to adequately resolve the third harmonic of the blade passing frequency with
9 points per wavelength (PPW). Thus, the resolution of the free-field wavelength against the flow at Ma ¼ 0:3 is about 27
PPW at the BPF. The axial resolution of the first radial of the m ¼ 13 mode in the IIC is found to be 47 PPW. As the resolution
is much better than required, the grid convergence can be studied by reducing the order of the method to fourth order
without optimisations. The mesh and overset grid are kept constant with this reduction. The resulting average acoustic
power fluxes are shown in Fig. 9. As can be seen, the results do not differ. There is no measurable influence of the
approximation order and the grid on the solution.

Furthermore, the parameters of the numerical filtering are varied in Fig. 9. First, the frequency of the filter application is
kept constant and the filter coefficient sfilter is increased from sfilter ¼ 0:25, which was used above, to sfilter ¼ 0:75. As can
be seen from Fig. 9, the resulting acoustic power flux along the duct is similar between both cases. A slightly increased
dissipation is observed for sfilter ¼ 0:75. While with the original setting less than 3% of the acoustic power are lost mainly
in the overset grid section, the increased filtering coefficient adds a decay along the IC. Overall almost 5% of the acoustic
energy are lost. The last test applies the selective artificial damping stencil of Tam et al. [10] as filter stencil. As can be seen
from Fig. 10, this stencil has been optimised to obtain a larger pass band. However, the dissipation in the pass band is
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increased due to the optimisation. The acoustic power flux along the duct shows a strong decay when this filter is applied.
More than 20 dB attenuation of the sound intensity level are observed.

To understand the result, the characteristics of the two different filtering stencils according to Eq. (4) are shown in
Fig. 10. For comparison the group velocity of the DRP scheme and the related wavenumber ranges are given as found in Tam
et al. [10]. The dissipation of the selective artificial damping (SAD) stencil is around 10�3 for a resolution of 50 PPW,
whereas the dissipation of the non-optimised sixth-order filter is below 10�6. The dissipation 1�C denotes the amplitude
loss for one application of the filter. Due to the frequent application of the filter, the dissipation of the SAD stencil, which is
applied as filter here, sums up and becomes intolerably large in the pass band. The Taylor filter on the other hand is able to
keep control over grid oscillations with only small dissipation in the pass band.

5.5. Source location

In this section the source power level (QPL) defined by Eq. (13) is employed to find acoustic sources in the numerical
solutions. The method is based on the identity of the average acoustic source strength with the divergence of the average
acoustic intensity. The divergence in a cylindrical coordinate system is calculated based on the spatial derivatives obtained
by using the DRP scheme. A negative QPL indicates a local annihilation of acoustic energy, whereas a positive value
indicates a production of acoustic energy and an increasing acoustic power along the duct. The results are shown in Fig. 11.
Only the two cases (B) ‘‘slip wall, s ¼const.’’ and (C) ‘‘shear layer’’ are considered. In addition, the application of the very
dissipative SAD-filter is considered. The scales are equalised between the figures. QPL values in the range of �100 dB are
cut-off in order to focus on the dominant sources. In the cut out range of the QPL, sources of equal strength are located all
over the duct. These sources are interpreted as numerical noise. Thus, the numerical noise level is assumed to be �100 dB
for the QPL.

Almost no sources are found for case (B) shown in Fig. 11(a). The source for the decrease of the acoustic power, which
was observed in Fig. 8 for the cases (A) and (B), is probably the interpolation error of the overset grid approach. This source
of numerical error shows up as QPL activity along the boundaries of the overset grid block. Especially, the upstream end of
the overset grid block (x ¼ 0:72 m) shows a pattern of positive and negative sources. The results indicate that the fourth-
order interpolation produces deviation from the conservation of acoustic energy in case (B). However, the small source
regions only marginally raise from the background noise. At the up- and downstream end of the computational domain, the
method identifies the sponge layer and PML zones as acoustic sources. These desired artificial sources are due to the
modification of the governing equations in these regions. Furthermore, some sources are located at the wall in the IIC,
which contribute to the oscillation of the overall acoustic power flux along x.

In contrast to the low source levels observed before for case (B), there is a large positive acoustic source along the outer
wall of the nozzle for case (C) presented in Fig. 11(b). In this case the observed source levels clearly raise over the sources
found all over the computational domain. The source region spans over the curved overset grid block as well as the
background mesh. As in case (B) a pattern of positive and negative sources is found at the upstream end of the overset grid
block (x ¼ 0:72 m), which indicates the presence of interpolation errors in this region. However, the nozzle is clearly
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Fig. 11. Divergence of the time averaged acoustic intensity. An arbitrary value of hPit ¼ 0:1 mW is assumed as input level. (a) Slip wall, isentropic model

(B). (b) Shear layer, non-isentropic model (C). (c) As (B), applying the SAD stencil as filter.
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identified as source for the observed increase of the acoustic power. Therefore, the current result allows a further
specification of the observations in the preceding section, where the integral value hPit increased by 15% between IC
and IIC.

Finally, the SAD-filter presented in Fig. 11(c) shows the largest absolute QPL in this study. The large negative value
corresponds to a strong attenuation of acoustic energy, which has been found in the acoustic power flux along the duct
presented in Fig. 9 for this filter as well. The oscillations around (x ¼ 0:72 m) are missing in this case, as the remaining
power level of the acoustic waves in this region is below the threshold of the presentation. The same applies for the PML
zone.

Altogether, the good quality of the numerical solution shown in the preceding section is underlined and the
interpolation error of the overset mesh is quantified to be around 3% in total for the current result. Probably the application
of a structured body-fitted mesh without overset grids would lead to a much larger error.

5.6. Tracking of the intensity path

In this section the acoustic intensity is employed to develop a simplified model vision about the complex modal acoustic
field in the centrifugal compressor inlet duct. The averaged path of the acoustic energy through the inlet duct is visualised
by power vectors. These power vectors are obtained by multiplying the acoustic intensity vectors by the area of an annulus
on which the intensity is found in average and normalizing the result by an arbitrary input power. The results are plotted in
Fig. 12. Concentrations of the acoustic power flux around r ¼ 0:1 m are found at x ¼ 1 and 1:6 m, which corresponds to the
positions with the smallest amplitudes at the outer wall found in Fig. 5. In between the waves are reflected towards the
outer wall of the duct. Thus, around x ¼ 1:3 higher amplitudes are found at the wall in Figs. 5 and 12. The sound pressure
level shown as contours in Fig. 12 underline the above findings.

As the acoustic wave length in the IC is small compared to the diameter, a ray model is also suitable to qualitatively
describe the acoustic wave propagation in this section. The acoustic waves leave the opening inlet, heading towards the
outer wall of the wider duct at an angle depending on their cut-off ratio. At the outer wall the waves get reflected towards
the axis and are then reflected outward again, but at a lower angle as Fig. 12 shows. This finally produces points at the wall
where the acoustic power is concentrated and points where only a small amount of energy is found as it was observed in
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Fig. 12. Sound pressure level distribution and path of the average acoustic energy visualised by vectors Ir for case (B).
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Fig. 5. However, multiple rays, one for each mode, with different radiation angles are necessary to obtain the complex
pattern. A single ray may, however, describe the close surrounding of the inlet nozzle up to the first reflection at the axis.
6. Conclusion

The detailed analysis and validation of a CAA result for a complex sound field has been presented by the example of a
centrifugal compressor inlet duct. A modal axisymmetric CAA method is applied together with an overset grid approach to
overcome the geometrical complexity of the problem, retaining a structured mesh.

The results are analysed for the acoustic energy conservation and a source location is provided. The acoustic intensity is
used to assess the quality and accuracy of the numerical results, independently of an analytical solution. The source
location by the acoustic intensity analysis provides a tool to understand the physical process of sound generation as well as
to find numerical error sources. It is shown that the leading order error is introduced by the overset grid interpolation.
However, it remains small within an engineering accuracy of 3% deviation from the conservation of the acoustic energy.

A mode analysis is applied. The modal content of the solution depends on the base flow assumption. However,
independently of the base flow, the highest modal amplitude is found in the higher radial modes around n ¼ 4 and 5. All
other cut-on radial modes are present at a considerable level. The acoustic energy is not equally distributed over the duct
area. Rather the transport of a majority of the acoustic energy takes place further away from the wall around 1

3 of the duct
radius, as an analysis of the intensity vectors shows. In consequence, the scattering into higher radial modes is identified as
the reason for the reduction of the average sound pressure level at the wall by about 20 dB between inlet channel and
immediate inlet channel.

The comparison of the different mean flow assumptions and model equations shows only small differences in the sound
power level observed at the wall. However, with the acoustic intensity sound sources are found in the accelerating flow
inside the inlet nozzle. The overall sound power level in the inlet duct is found to be increased by about 15% in case of
realistic flow with shear layer at the walls modelled by the non-isentropic governing equations.

Further examples are given to demonstrate the strength of the intensity analysis. A very dissipative filter, which is
obtained by using the selective artificial damping coefficients of Tam et al. [10] as filter stencil, is clearly identified as
numerical error source by the overall average acoustic power flux in the duct as well as the source location by the acoustic
intensity. The applied filter and the numerical method are found to have only small impact on the solution in the current
example. This is probably a result of the high grid resolution in combination with the high quality of the grid, which could
be achieved by applying an overset grid approach.

Altogether, various postprocessing methods for the analysis and assessment of numerical results based on the acoustic
intensity and a modal analysis have been presented. The results demonstrate the versatile applicability of the time
averaged acoustic intensity to understand and validate an aeroacoustic solution. This is a general result, with the potential
to be transferred to all aeroacoustic applications in computational fluid dynamics. However, the adoption to radiation
problems and problems involving hydrodynamic vorticity and entropy perturbations may require a further validation of
the intensity definition and a method for extracting the acoustic velocity from the velocity perturbation.
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